
The TUNES System Specification

Brian T. Rice, Editor

8th April 2003

Contents

1 Overview 3
1.1 Purpose . 3
1.2 Scope . 3
1.3 History . 3
1.4 Document Conventions . 3

1.4.1 Typography . 3
1.4.2 Organization . 4

1.5 Conformance . 4
1.6 Subsets . 4

2 The System 5
2.1 Introduction . 5
2.2 Description . 5
2.3 Requirements . 5

2.3.1 Fully-Reflective . 5
2.3.2 Unified . 5
2.3.3 Verifiable . 6
2.3.4 Higher-Order . 6
2.3.5 Self-Extensible . 6
2.3.6 Dynamic . 6
2.3.7 Fine-Grained . 6
2.3.8 Fault-Tolerant . 6
2.3.9 Distributed . 7
2.3.10 Scalable . 7

3 Aspects 8
3.1 High-Level . 8

3.1.1 Introduction . 8
3.1.2 Types . 8
3.1.3 Operations . 9

3.2 Meta-Linguistic . 9
3.2.1 Introduction . 9
3.2.2 Types . 9
3.2.3 Operations . 10

1

CONTENTS 2

3.3 Interface . 10
3.3.1 Introduction . 10
3.3.2 Types . 10
3.3.3 Operations . 11

3.4 Migration . 11
3.4.1 Introduction . 11
3.4.2 Types . 12
3.4.3 Operations . 12

3.5 Low-Level . 12
3.5.1 Introduction . 12
3.5.2 Types . 13
3.5.3 Operations . 13

4 Elements 14
4.1 High-Level . 14

4.1.1 Objects . 14
4.1.2 Attributions . 14
4.1.3 Effects . 14
4.1.4 Abstractions . 14
4.1.5 Applications . 14

4.2 Meta-Linguistic . 14
4.2.1 Grammars . 14
4.2.2 Evaluators . 14
4.2.3 Dispatchers . 14
4.2.4 Responders . 14
4.2.5 Transformers . 14

4.3 Interface . 14
4.3.1 Terminals . 14

4.4 Migration . 14
4.5 Low-Level . 14

5 Subsets 15
5.1 Definition . 15
5.2 Core/Bootstrap Language Semantics 15

5.2.1 Introduction . 15
5.2.2 Semantics . 15
5.2.3 Syntax . 15

5.3 T3P/TM3P Module Encoding Protocol 15
5.3.1 Introduction . 15

5.4 Initial Standard Publication System 16
5.4.1 Introduction . 16

Chapter 1

Overview

1.1 Purpose
This document presents schematic description of the requirements for a TUNES system
architecture. This is a working draft, designed to provide precise technical feedback to
TUNES project members as design issues are resolved. Implementation strategies are
suggested, but not specified.

1.2 Scope
This document specifies the basic requirements required to satisfy the definition of a
TUNES system as set out at the TUNES Project website http://www.tunes.org/.
This is not a tutorial or an implementation guide, although suggestions may be made
in order to illustrate and coordinate ideas.

1.3 History
The TUNES Project has existed for many years in an early planning and speculation
stage. Several projects exist to advance its goals, but coordination was found to be
necessary to help guide the project and solidify the goals.

1.4 Document Conventions

1.4.1 Typography
� Formal terms which have a precise definition within the specification are denoted

with a SMALL CAPS style.

� Emphasis is provided through italics.

3

CHAPTER 1. OVERVIEW 4

1.4.2 Organization
Since this document is a reference, the order of presentation has not been layed out for
introductory purposes.

This document’s chapters are separated into levels of detail. Major sections of the
system are explained in terms of their core types and operations on those types.

1.5 Conformance
Unlike many standards, which delineate deviation in terms of disallowed behavior
within the system under scrutiny, the nature of the TUNES project requires that confor-
mance be tested by verifying that the implementation allows everything specified by the
standard. Incompleteness is expressed in terms of possibilities that are not supported.

Specifically, if some element of the specification is not explicitly restricted in its
scope, then it should be read as stating that there is no restriction of the scope. The
simplest example of this is the type of an object within some role in an operation or
other type.

1.6 Subsets
This specification defines a standard subset in various sections which is considered
suitable for bootstrapping. This subset may be altered to suit dynamic requirements as
the initial construction and bootstrap process proceed.

This specification does not define any other subsets, but defines frameworks for
publishing subsets.

Chapter 2

The System

2.1 Introduction
A running TUNES system consists of a self-supporting CONFIGURATION of OBJECTs.

2.2 Description
A TUNES system is distinguished from a programming language, an operating system,
or various mixtures of these concepts as such. TUNES is first and foremost an environ-
ment; that is, it is defined by the services it provides rather than the form, structure, or
interface that those services take on in a given implementation. The project is moreover
an attempt to separate service or interface from implementation in a very broad, sys-
tematic sense, while providing a coherent environment in which many implementations
may co-exist and provide the same services in different CONTEXTs.

2.3 Requirements

2.3.1 Fully-Reflective
The system must contain at least one standard exectuable EXPRESSION of its full ar-
chitecture within itself.

2.3.2 Unified
The system must provide standard support for unification of system ABSTRACTIONs.
This requires at least that for any two TYPEs of OBJECT within the system and corre-
sponding CONTEXTs, there must exist some standard way to express (or generate the
expression of) each OBJECT in the opposite CONTEXT.1

1This requirement’s formulation is flawed.

5

CHAPTER 2. THE SYSTEM 6

2.3.3 Verifiable
The system must contain and be able to subject its parts to a means of mechanical
verification of assertions within contexts. There must also be a published means of
communicating these results when migrating software.

2.3.4 Higher-Order
Any kind of ABSTRACTION is recursively possible over the system and its OBJECTs.
That is, OBJECTs created by abstraction operations should be subjectable to further
abstractions based on their TYPE.

2.3.5 Self-Extensible
The means of expression must be available within the system to abstract some (any?)
issue in a system-wide scope.
There must be a sufficient collection/system of ABSTRACTIONs available (but not nec-
essarily imposed) in every area of the system for a meta-system transition in some
(any?) manner to be possible based on them. Examples include basic syntactic quota-
tion, escaping mechanisms, quotienting in arbitrary directions of abstraction, or some
kind of quotient inversion, where a simple domain is carved out of a complex domain
by adding some required constraints which they do not all satisfy. This latter example
corresponds roughly to a comprehension, of which various sorts exist.
As with any element of these requirements, this kind of capability has to be available
in any domain within the system or across multiple systems.

2.3.6 Dynamic
Any operation defined here may be used dynamically without loss of capability. That
is, it is expressly permitted for any TUNES system operation to occur in the midst of
any computational activity within that system at any time. Any restriction made on
what can be done dynamically constitutes the definition of a SUBSET.

2.3.7 Fine-Grained
A TUNES system must place no limit on the ability to eliminate expressive overhead
involved in operations on OBJECTs of a specific TYPE, regardless of its kind, within the
system.

2.3.8 Fault-Tolerant
A TUNES system must provide some means for assuring that no mismatch or variation
of expected behavior will interrupt the system as a whole.

CHAPTER 2. THE SYSTEM 7

2.3.9 Distributed
Any operation or object should be implementable or re-implementable by a coordi-
nation of many other objects without restriction in expressiveness. This applies to
physical distribution as well as semantic distribution.

2.3.10 Scalable
Each subsystem defined as a TYPE or an operation must be scalable. That is, for a given
CONTEXT, there must exist some facility for scaling down the semantic generality cov-
ered by the implementation of that OBJECT to the level of semantics actually employed
within the CONTEXT. This is related to the notion of partial evaluation.

Chapter 3

Aspects

3.1 High-Level

3.1.1 Introduction
The High-Level aspect of a TUNES system includes all objects required to define any
ABSTRACTION within the system.

3.1.2 Types
Object All elements of the system. Within this document, any unqualified use of

this term means any element of a TUNES system. Objects may be manifest or
implicit in a particular context, but there will at all times be some mechanism(s)
available to make any object manifest within a context.

Attribution An OBJECT relating a source object to an attribute object via a key object.
An attribution may be static or dynamically-resolved, and (side-)effecting or not.

Meta-Object The term for an OBJECT which deals with some part of the essential
characteristics of another. An object can be a meta-object of another object in-
dependently of whether or not it provides some function of the implementation
of that target object. There are various types of meta-objects. Each meta-object
type that deals with a universal kind of aspect of objects may be a meta-object of
any object in the system without restriction.

Configuration An OBJECT representing some requirements on the relationships be-
tween some collection of objects.

Context Any OBJECT encapsulating the implicit meaning of another object. The na-
ture of a context object determines how an object is expressed within that context.
The expression of an object within a context is the object’s creation, so there is
some definite orientation of the object to that context.
Unlike the term used within human linguistics, there is no natural lack of access

8

CHAPTER 3. ASPECTS 9

to the original context, so a TUNES system only engages in contextual forensics
for external systems or internal, unpredictable systems.

Type Any OBJECT representing a class of properties that another OBJECT or CON-
FIGURATION of objects satisfies. All objects have types; all objects may have
multiple types. The type of an object is in one way self-defining: each object
satisfies properties that distinguish it from other objects, and this is precisely
what distinguishes objects.

Type System The term for a collection of types along with operations on those types
and some form of relations between them.

Effect An OBJECT representing a change in the system. These can be provided at
various abstraction levels, and the changes themselves may have varying seman-
tics. It is nevertheless the required case that for every effect there must be an
expression of it as a function on the system.1

Expression An OBJECT representing another in some linguistic CONTEXT.

Side-Effect The term for an EFFECT not encoded expressly in some EXPRESSION.

3.1.3 Operations
Apply Couples an ABSTRACTION expression with an input expression.2

Abstract (or lambda) Creates a function by specifying a REWRITE with an input CON-
FIGURATION and some body expressions.

Instantiate (or epsilon)

Replace

3.2 Meta-Linguistic

3.2.1 Introduction
The Meta-Linguistic aspect of a TUNES system includes all objects which deal with
the expression of languages and relation and translation issues between them.

3.2.2 Types
Expression An object representing another in some linguistic context.

Specification An expression describing a configuration.

1This is too strong of a requirement, if it implies that all information must be retained when replaced.
2Fix this.

CHAPTER 3. ASPECTS 10

3.2.3 Operations
Parse Transform a stream of (character) objects into an OBJECT structure

Expand Code-transformation techniques that are transparent to the semantics of the
program specification itself.

Search Control of evaluation order within the limits of the evaluation-order require-
ments of the semantics of the CONTEXT.

Dispatch Taking each APPLICATION expression, consisting of a function designa-
tor and its arguments, and determining according to the environment and its
function-definition semantics, and identifying the right function-definition or com-
binations thereof to APPLY.

Rewrite Applying EFFECTs specified by the program to the system.

Respond Communicating the effects of some REWRITE to the calling context.

Translate

3.3 Interface

3.3.1 Introduction
The Interface aspect of the TUNES system includes all objects whose purpose relates
to the display of information for a user and meaningful interaction with users.

3.3.2 Types
User An OBJECT representing a particular human user or agent thereof that interacts

through a TERMINAL device. User objects have an associated environment which
carries the vocabulary and preferences specific to that user.

Terminal An interaction component of the system, consisting of at least one input and
one output device.

Gesture A unit OBJECT of input or output interaction. The TERMINAL device’s char-
acteristics determine the possible granularity of these objects.

Command An OBJECT representing a single event or combination of events which
have been given some meaning by their presence within some interaction CON-
TEXT.

Activity An OBJECT representing a user’s model of some sequence of events directed
towards a perceived specified objective.

Medium An OBJECT representing a particular interaction device, with its characteris-
tics, behavior, and state. All objects of this TYPE are subject to a generic protocol
which allows for abstraction within the limits of the device capabilities.

CHAPTER 3. ASPECTS 11

Display An OBJECT representing an abstract rendering device.3

Color An OBJECT representing a visual color, a kind of DESIGN.

Style An OBJECT representing a set of options and settings for rendering something
on a DISPLAY.

Region An OBJECT representing a geometric space of some dimension.

Design An OBJECT representing any graphical pattern. Designs may be composed
with each other into final designs.

Presentation An OBJECT which contains presentation aspects of the rendering of
some object. Presentation objects may have formatting options and their own
user-centric type notion separate from the type of the presented object.

Morph An object whose context is a display. Objects of this type are those which
offer the user some form of direct manipulation and do not inherently concern
the presentation of some other object.

World An object representing some site on a DISPLAY.

Portal An object representing some channel between sites or a bus among sites on a
display.

3.3.3 Operations
Draw Rendering a display OBJECT onto a DISPLAY with some particular STYLE.

Print Rendering an OBJECT onto a DISPLAY in a form suitable for direct input to some
reader.

Read Creating an OBJECT from some input description.

Present

Request

Accept

3.4 Migration

3.4.1 Introduction
The Migration aspect of a TUNES system includes all objects which describe the iden-
tity and relate to mechanisms for moving or duplicating objects between any kind of
contexts.

3Is this redundant with a MEDIUM?

CHAPTER 3. ASPECTS 12

3.4.2 Types
Module A CONFIGURATION of OBJECTs with formal requirements for comprehension

and formal provisions.

Site A source or target of communication.

Protocol A medium of communication. Precisely, a language/encoding.

Stream A possibly endless sequence of objects, sent between sites.

Packet A single element of a stream.

Memory Region A subset of a storage device with a particular management type for
its memory.

Space 4A sharable OBJECT which provides a means of accessing publications.

Reference An encoding of a remote OBJECT; generally, a program to retrieve an object
for use.

Persistent Store

Version

3.4.3 Operations
Reify Takes some SPECIFICATION of the target CONTEXT, and removes an OBJECT

from a source CONTEXT based on the required elements. It slices the OBJECT
from the CONTEXT, and represents the relevant parts to send to the target CON-
TEXT.

Communicate Renders the MODULE in some medium that both the source and target
CONTEXTs advertise that they support, and actually transports the MODULE’s
contents as necessary.

Absorb Takes a description of some MODULE to receive, and evaluates as necessary
to install the objects in the target CONTEXT.

Publish Registers some MODULE within a SPACE, with a TYPE and a VERSION known
to some shared server SITE which can mediate the exchange. SPACEs themselves
can notably be published.

3.5 Low-Level

3.5.1 Introduction
The Low-Level aspect of a TUNES system involves all objects whose sole role involves
the implementation of other objects in the system.

4Revise this term’s name.

CHAPTER 3. ASPECTS 13

3.5.2 Types
Bit A single discrete unit of memory with two possible states.

Word A vector of BITs defined as a unit of memory for some (possibly abstract) ma-
chine.

Memory A quantity of information managed and storable by some device.

Processor An operational machine that processes information stored in MEMORY.

Channel A structure through which information is passed between two SITEs or OB-
JECTs, which can have state and modes. Channels can be concrete or abstract,
and abstract channels can be emulated by other channels through agreed proto-
cols.

Bus A shared communications medium, having many publishers and subscribers to
information. A bus can often be considered in terms of many cooperating CHAN-
NELs.

Thread An OBJECT representing a unit of execution, possibly with an associated
voucher for PROCESSOR resources.

Encoding An OBJECT representing a particular TYPE of low-level representation for
some other type of OBJECT.

3.5.3 Operations
Bootload

Call

Allocate

De-allocate

Encode

Decode

Chapter 4

Elements

4.1 High-Level

4.1.1 Objects

4.1.2 Attributions

4.1.3 Effects

4.1.4 Abstractions

4.1.5 Applications

4.2 Meta-Linguistic

4.2.1 Grammars

4.2.2 Evaluators

4.2.3 Dispatchers

4.2.4 Responders

4.2.5 Transformers

4.3 Interface

4.3.1 Terminals

4.4 Migration

4.5 Low-Level

14

Chapter 5

Subsets

5.1 Definition
A TUNES system SUBSET is a specified restricted group of capabilities that fulfill the
common criteria of functionality of some TUNES aspect or subsystem. The intended
purposes of a subset may be to bootstrap or connect from legacy systems; both pur-
poses can be satisfied simultaneously. Another purpose of a TUNES subset may be
to enforce some invariants for the sake of providing an environment customized to a
particular idiom or style, and easing the implementation’s load in rendering the envi-
ronment efficiently.

5.2 Core/Bootstrap Language Semantics

5.2.1 Introduction
The “HLL-” language is a defined SUBSET of the TUNES system High-Level aspect.
The primary design considerations include proper allowance for extension into the full
system, avoidance of limiting semantics or features, and easy of implementation.

5.2.2 Semantics

5.2.3 Syntax

5.3 T3P/TM3P Module Encoding Protocol

5.3.1 Introduction
The TUNES Package Publishing Protocol (or “T3P”) is a defined initial ENCODING
for the Migration aspect of the TUNES system. The primary design considerations
include independence of the communications medium, universal extensibility at least
to the level of the HLL-, and generality in negociating information transfers.

15

CHAPTER 5. SUBSETS 16

5.4 Initial Standard Publication System

5.4.1 Introduction

Index

Absorb, 12
Abstract, 9
Accept, 11
Activity, 10
Allocate, 13
Apply, 9
Attribution, 8

Bit, 13
Bootload, 13
Bus, 13

Call, 13
Channel, 13
Color, 11
Command, 10
Communicate, 12
Configuration, 8
Context, 8

De-allocate, 13
Decode, 13
Design, 11
Dispatch, 10
Display, 11
Draw, 11

Effect, 9
Encode, 13
Encoding, 13
Expand, 10
Expression, 9

Gesture, 10

Instantiate, 9

Medium, 10

Memory, 13
Memory Region, 12
Module, 12
Morph, 11

Namespace, 12

Object, 8

Packet, 12
Parse, 10
Persistent Store, 12
Portal, 11
Present, 11
Presentation, 11
Print, 11
Processor, 13
Protocol, 12
Publish, 12

Read, 11
Reference, 12
Region, 11
Reify, 12
Replace, 9
Request, 11
Respond, 10
Rewrite, 10

Search, 10
Side-Effect, 9
Site, 12
Specification, 9
Stream, 12
Style, 11
System, 9

Terminal, 10

17

INDEX 18

Thread, 13
Translate, 10
Type, 9

User, 10

Version, 12

Word, 13
World, 11

Bibliography

[1] The TUNES Project Website http://www.tunes.org. François-René Rideau.

[2] The Common Lisp Hyperspec, derived from the ANSI Common Lisp standard
(X3.226-1994), at http://www.xanalys.com/software_tools/reference/
HyperSpec/. Common Lisp committee J13; Project Editor, Kent M. Pitman. 1994.

19

